Problem: Let R=gSβ4R=g S-4R=gSβ4. When S=8,R=16S=8, R=16S=8,R=16. When S=10,RS=10, RS=10,R is equal to:
Answer Choices:
A. 111111
B. 141414
C. 202020
D. 212121
E. none of these answers. Solution:
16=8gβ4;β΄g=212;β΄R=(212)10β4=2116=8 g-4 ; \quad \therefore g=2 \dfrac{1}{2} ; \quad \therefore R=\left(2 \dfrac{1}{2}\right) 10-4=2116=8gβ4;β΄g=221β;β΄R=(221β)10β4=21.