Problem: If 10m=bβ10n\log _{10} m=b-\log _{10} nlog10βm=bβlog10βn, then m=m=m=
Answer Choices:
A. bn\dfrac{b}{n}nbβ
B. bnb nbn
C. 10bn10^{b} n10bn
D. bβ10nb-10^{n}bβ10n
E. 10bn\dfrac{10^{b}}{n}n10bβ Solution:
b=10m+10n=10mn;β΄mn=10b;β΄m=10b/nb=\log _{10} m+\log _{10} n=\log _{10} m n ; \quad \therefore m n=10^{b} ; \quad \therefore m=10 ^b / nb=log10βm+log10βn=log10βmn;β΄mn=10b;β΄m=10b/n;
or
10m=1010bβ10n=10(10b/n);β΄m=10b/n\log _{10} m=\log _{10} 10^{b}-\log _{10} n=\log _{10}\left(10^{b} / n\right) ; \quad \therefore m=10^{b} / nlog10βm=log10β10bβlog10βn=log10β(10b/n);β΄m=10b/n.