Problem: Reduced to lowest terms. a2βb2abβabβb2abβa2\dfrac{a^{2}-b^{2}}{a b}-\dfrac{a b-b^{2}}{a b-a^{2}}aba2βb2ββabβa2abβb2β is equal to:
Answer Choices:
A. ab\dfrac{a}{b}baβ
B. a2β2b2ab\dfrac{a^{2}-2 b^{2}}{a b}aba2β2b2β
C. a2a^{2}a2
D. aβ2ba-2 baβ2b
E. none of these answers. Solution:
a2βb2abβb(aβb)a(bβa)=a2βb2ab+b2ab=ab\dfrac{a^{2}-b^{2}}{a b}-\dfrac{b(a-b)}{a(b-a)}=\dfrac{a^{2}-b^{2}}{a b}+\dfrac{b^{2}}{a b}=\dfrac{a}{b}aba2βb2ββa(bβa)b(aβb)β=aba2βb2β+abb2β=baβ.