Problem: If xxxβ β β =2x^{x^{x^{\cdot^{\cdot^{\cdot}}}}} =2xxxβ β β =2, then xxx is equal to.
Answer Choices:
A. infinityinfinityinfinity
B. 222
C. 24\sqrt[4]{2}42β
D. 2\sqrt{2}2β
E. none of these answers. Solution:
If xxxβ β β =2x^{x^{x^{\cdot^{\cdot^{\cdot}}}}} =2xxxβ β β =2, then the exponent, which is again xxxβ β β x^{x^{x^{\cdot^{\cdot^{\cdot}}}}}xxxβ β β is also 2, and we have x2=2x^{2}=2x2=2. Therefore x=2x=\sqrt{2}x=2β.