Problem: 2n+4β2(2n)2(2n+3)\dfrac{2^{n+4}-2\left(2^{n}\right)}{2\left(2^{n+3}\right)}2(2n+3)2n+4β2(2n)β when simplified is:
Answer Choices:
A. 2n+1β182^{n+1}-\dfrac{1}{8}2n+1β81β
B. β2n+1-2^{n+1}β2n+1
C. 1β2n1-2^{n}1β2n
D. 78\dfrac{7}{8}87β
E. 74\dfrac{7}{4}47β Solution:
2n+4β2(2n)2(2n+3)=2nβ 24β2β 2n2β 2nβ 23=2β 2n(23β1)2β 2nβ 23=78\dfrac{2^{n+4}-2\left(2^{n}\right)}{2\left(2^{n+3}\right)}=\dfrac{2^{n} \cdot 2^{4}-2 \cdot 2^{n}}{2 \cdot 2^{n} \cdot 2^{3}}=\dfrac{2 \cdot 2^{n}\left(2^{3}-1\right)}{2 \cdot 2^{n} \cdot 2^{3}}=\dfrac{7}{8} 2(2n+3)2n+4β2(2n)β=2β 2nβ 232nβ 24β2β 2nβ=2β 2nβ 232β 2n(23β1)β=87β