Problem: In the equation (xβ1)(mβ1)x(xβ1)β(m+1)β=mxβ the roots are equal when
Answer Choices:
A. m=1
B. m=21β
C. m=0
D. m=β1
E. m=β21β
Solution:
After simplification, we have x2βxβm(m+1)=0. For equal roots the discriminant D=1+4m(m+1)=0=(2m+1)2.
β΄m=β21β.