Problem: If xy=34\dfrac{x}{y}=\dfrac{3}{4}yxβ=43β, then the incorrect expression in the following is:
Answer Choices:
A. x+yy=74\dfrac{x+y}{y}=\dfrac{7}{4}yx+yβ=47β
B. yyβx=41\dfrac{y}{y-x}=\dfrac{4}{1}yβxyβ=14β
C. x+2yx=113\dfrac{x+2 y}{x}=\dfrac{11}{3}xx+2yβ=311β
D. x2y=38\dfrac{x}{2 y}=\dfrac{3}{8}2yxβ=83β
E. xβyy=14\dfrac{x-y}{y}=\dfrac{1}{4}yxβyβ=41β Solution:
x=34yβ΄xβyy=β14β΄(E)x=\dfrac{3}{4} y \quad \therefore \dfrac{x-y}{y}=-\dfrac{1}{4} \quad \therefore(\mathrm{E})x=43βyβ΄yxβyβ=β41ββ΄(E) is incorrect.