Problem: The sides of a regular polygon of n sides, n>4, are extended to form a star. The number of degrees at each point of the star is:
Answer Choices:
A. n360β
B. n(nβ4)180β
C. n(nβ2)180β
D. 180βn90β
E. n180β
Solution:
Each such angle is the vertex angle of an isosceles triangle whose base angles are each, in degrees, 180β(nβ2)180/n=360/n.
β΄ angle =180β(720/n)=(180nβ720)/n=180(nβ4)/n