Problem: If y=x+1/x, then x4+x3β4x2+x+1=0 becomes
Answer Choices:
A. x2(y2+yβ2)=0
B. x2(y2+yβ3)=0
C. x2(y2+yβ4)=0
D. x2(y2+yβ6)=0
E. none of these
Solution:
x4+x3β4x2+x+1=x2[(x2+x21β)+(x+x1β)β4]=0.
Since x2+x21β=(x+x1β)2β2, we have x2(y2β2+yβ4)=x2(y2+yβ6)=0.