Problem: If 10(x2β3x+6)=1\log _{10}\left(x^{2}-3x+6\right)=1log10β(x2β3x+6)=1, the value of xxx is
Answer Choices:
A. 101010 or 222
B. 444 or β2-2β2
C. 3β©rβ13 \cap r-13β©rβ1
D. 444 or β1-1β1
E. none of these Solution:
x2β3x+6=101=10x^{2}-3 x+6=10^{1}=10x2β3x+6=101=10 or x2β3xβ4=0;β΄x=4x^{2}-3 x-4=0 ; \quad \therefore x=4x2β3xβ4=0;β΄x=4 or β1-1β1