Problem: The square of 5βy2β255-\sqrt{y^{2}-25}5βy2β25β is:
Answer Choices:
A. y2β5y2β25y^{2}-5 \sqrt{y^{2}-25}y2β5y2β25β
B. βy2-y^{2}βy2
C. y2y^{2}y2
D. (5βy)2(5-y)^{2}(5βy)2
E. y2β10y2β25y^{2}-10 \sqrt{y^{2}-25}y2β10y2β25β Solution:
(5βy2β25)2=25β10y2β25+y2β25=y2β10y2β25\left(5-\sqrt{y^{2}-25}\right)^{2}=25-10 \sqrt{y^{2}-25}+y^{2}-25=y^{2}-10 \sqrt{y^{2}-25}(5βy2β25β)2=25β10y2β25β+y2β25=y2β10y2β25β.