Problem: logβ‘125\log 125log125 equals:
Answer Choices:
A. 100logβ‘1.25100 \log 1.25100log1.25 B. 5logβ‘35 \log 35log3 C. 3logβ‘253 \log 253log25 D. 3β3logβ‘23-3 \log 23β3log2 E. (logβ‘25)(logβ‘5)(\log 25)(\log 5)(log25)(log5)
Solution:
logβ‘125=logβ‘(1000/8)=logβ‘1000βlogβ‘8=3βlogβ‘23=3β3logβ‘2\log 125=\log (1000 / 8)=\log 1000-\log 8=3-\log 2^{3}=3-3 \log 2log125=log(1000/8)=log1000βlog8=3βlog23=3β3log2.