Problem: If (a+1a)2=3\left(a+\dfrac{1}{a}\right)^{2}=3(a+a1β)2=3, then a3+1a3a^{3}+\dfrac{1}{a^{3}}a3+a31β equals:
Answer Choices:
A. 1033\dfrac{10 \sqrt{3}}{3}3103ββ
B. 333 \sqrt{3}33β
C. 000
D. 777 \sqrt{7}77β
E. 636 \sqrt{3}63β Solution:
a3+1a3=(a+1a)3β3(a+1a)=33β33=0a^{3}+\dfrac{1}{a^{3}}=\left(a+\dfrac{1}{a}\right)^{3}-3\left(a+\dfrac{1}{a}\right)=3 \sqrt{3}-3 \sqrt{3}=0a3+a31β=(a+a1β)3β3(a+a1β)=33ββ33β=0.