Problem: The value of 161βa0+(16a1β)0β(64β1/2)β(β32)β4/5 is:
Answer Choices:
A. 11613β
B. 1163β
C. 1
D. 87β
E. 161β
Solution:
x0=1 for any number x(xξ =0) and β32=β25.
β΄161β+1β64β1ββ(β25)1/51β=161β+1β81ββ161β=87β.