Problem: If logβ‘xβ5logβ‘3=β2\log x-5 \log 3=-2logxβ5log3=β2, then xxx equals:
Answer Choices:
A. 1.251.251.25
B. 0.810.810.81
C. 2.432.432.43
D. 0.80.80.8
E. either 0.8 or 1.25 Solution:
logβ‘xβ5logβ‘3=logβ‘(x/35);β΄10β2=x/35;β΄x=2.43\log x-5 \log 3=\log \left(x / 3^{5}\right) ; \quad \therefore 10^{-2}=x / 3^{5} ; \quad \therefore x=2.43logxβ5log3=log(x/35);β΄10β2=x/35;β΄x=2.43.