Problem: If y=x2+px+qy=x^{2}+p x+qy=x2+px+q, then if the least possible value of yyy is zero qqq is equal to.
Answer Choices:
A. 000
B. p24\dfrac{p^{2}}{4}4p2β
C. p2\dfrac{p}{2}2pβ
D. βp2-\dfrac{p}{2}β2pβ
E. p24βq\dfrac{p^{2}}{4}-q4p2ββq Solution:
The least value occurs when x=βp/2x=-p / 2x=βp/2. For x=βp/2x=-p / 2x=βp/2, y=(βp2/4)+q=0;β΄q=p2/4y=\left(-p^{2} / 4\right)+q=0 ; \quad \therefore q=p^{2} / 4y=(βp2/4)+q=0;β΄q=p2/4