Problem: If a,b, and c are positive integers, the radicals a+cbββ and acbββ are equal when and only when.
Answer Choices:
A. a=b=c=1
B. a=b and c=a=1
C. c=ab(a2β1)β
D. a=b and c is any value
E. a=b and c=aβ1
Solution:
If a+cbββ=acbββ then a+cbβ=a2cbβ.
β΄ac=b(a2β1);β΄c=o(a2β1)/a.