Problem: The fraction 2x2+xβ65xβ11β was obtained by adding the two fractions x+2Aβ and 2xβ3Bβ. The values of A and B must be:
Answer Choices:
A. A=5x, B=β11
B. A=β11, B=5x
C. A=β1, B=3
D. A=3, B=β1
E. A=5, B=β11
Solution:
(x+2)(2xβ3)A(2xβ3)+B(x+2)β=2x2+xβ65xβ11β;
A(2xβ3)+B(x+2)β‘5xβ11.
Equating the coefficients of like powers of x, we obtain 2A+B=5,
β3A+2B=β11;β΄A=3,B=β1.