Problem: If the altitude of an equilateral triangle is 6\sqrt{6}6β, then the area is:
Answer Choices:
A. 222 \sqrt{2}22β
B. 232 \sqrt{3}23β
C. 333 \sqrt{3}33β
D. 626 \sqrt{2}62β
E. 121212 Solution:
h=s23;β΄s=2h3,A=s234=4h23β 34=633=23h=\dfrac{s}{2} \sqrt{3} ; \quad \therefore s=\dfrac{2 h}{\sqrt{3}}, A=\dfrac{s^{2} \sqrt{3}}{4}=\dfrac{4 h^{2}}{3} \cdot \dfrac{\sqrt{3}}{4}=\dfrac{6 \sqrt{3}}{3}=2 \sqrt{3}h=2sβ3β;β΄s=3β2hβ,A=4s23ββ=34h2ββ 43ββ=363ββ=23β.