Problem: Triangle PAB is formed by three tangents to circle O. Angle APB=40β, then angle AOB equals:
Answer Choices:
A. 45β
B. 50β
C. 55β
D. 60β
E. 70β
Solution:
β P=40β;β΄β PAB+β PBA=180ββ40β=140β.
β TAS=180βββ PAB
β RBS=180βββ PBA
β TAS+β RBS=360ββ140β
=220β.
Since OA and OB bisect angles TAS and RBS, respectively, β OAS+β OBS=21β(220β)=110β.
β΄β AOB=180ββ110β=70β
The number of degrees in β AOB is independent of the position of tangent ASB.