Problem: If y=x2β2x+1+x2+2x+1y=\sqrt{x^{2}-2 x+1}+\sqrt{x^{2}+2 x+1}y=x2β2x+1β+x2+2x+1β, then yyy is:
Answer Choices:
A. 2x2 x2x
B. 2(x+1)2(x+1)2(x+1)
C. 000
D. β£xβ1β£+β£x+1β£|x-1|+|x+1|β£xβ1β£+β£x+1β£
E. none of these Solution:
Since x2β2x+1=β£xβ1β£\sqrt{x^{2}-2 x+1}=|x-1|x2β2x+1β=β£xβ1β£ and x2+2x+1=β£x+1β£\sqrt{x^{2}+2 x+1}=|x+1|x2+2x+1β=β£x+1β£, (D) is correct.