Problem: The vertices of triangle PQR have coordinates as follows: P(o,a),Q(b,o),R(c,d), where a,b,c and d are positive. The area of triangle PQR may be found from the expression:
Answer Choices:
A. 2ab+ac+bc+cdβ
B. 2ac+bdβabβ
C. 2abβacβbdβ
D. 2ac+bd+abβ
E. 2ac+bdβabβcdβ
Solution:
From R:(c,d), draw line segment RA perpendicular to the x-axis. Let O denote the origin (0,0).
If c>b,
area β³PQR= area trapezoid OPRAβ area β³QAR - area β³OPQ
=21βc(a+d)β21βd(cβb)β21βab=21β(ac+bdβab).
If c<b,
area β³PQR= area trapezoid OPRA+ area β³QARβ area β³OPQ
=21βc(a+d)+21βd(bβc)β21βab=21β(ac+bdβab).