Problem: If P=s(1+k)nP=\dfrac{s}{(1+k)^{n}}P=(1+k)nsβ, then nnn equals:
Answer Choices:
A. logβ‘s/Plogβ‘(1+k)\dfrac{\log s / P}{\log (1+k)}log(1+k)logs/Pβ
B. logβ‘sP(1+k)\log \dfrac{\mathrm{s}}{\mathrm{P}(1+\mathrm{k})}logP(1+k)sβ
C. logβ‘sβP1+k\log \dfrac{s-P}{1+k}log1+ksβPβ
D. logβ‘sP+logβ‘(1+k)\log \dfrac{s}{P}+\log (1+k)logPsβ+log(1+k)
E. logβ‘slogβ‘P(1+k)\dfrac{\log s}{\log P(1+k)}logP(1+k)logsβ Solution:
logβ‘P=logβ‘sβnlogβ‘(1+k)\log P=\log s-n \log (1+k) logP=logsβnlog(1+k)
n=logβ‘sβlogβ‘Plogβ‘(1+k)=logβ‘s/Plogβ‘(1+k)n=\dfrac{\log s-\log P}{\log (1+k)}=\dfrac{\log s / P}{\log (1+k)} n=log(1+k)logsβlogPβ=log(1+k)logs/Pβ