Problem: If 1xβ1y=1z\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{z}x1ββy1β=z1β, then zzz equals:
Answer Choices:
A. yβxy-xyβx
B. xβyx-yxβy
C. yβxxy\dfrac{y-x}{x y}xyyβxβ
D. xyyβx\dfrac{x y}{y-x}yβxxyβ
E. xyxβy\dfrac{x y}{x-y}xβyxyβ Solution:
yβxxy=1z; z=xyyβx\dfrac{y-x}{x y}=\dfrac{1}{z} ;~ z=\dfrac{x y}{y-x} xyyβxβ=z1β; z=yβxxyβ