Problem: Given a0β=1,a1β=3, and the general relation an2ββanβ1βan+1β=(β1)n for nβ₯1. Then a3β equals:
Answer Choices:
A. 13/27
B. 33
C. 21
D. 10
E. β17
Solution:
When n=1a12ββa0βa2β=(β1)1;a2β=10
When n=2a22ββa1βa3β=(β1)2;a3β=33