Problem: The expression 2+2+12+2+12β22+\sqrt{2}+\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{\sqrt{2}-2}2+2β+2+2β1β+2ββ21β equals:
Answer Choices:
A. 222
B. 2β22-\sqrt{2}2β2β
C. 2+22+\sqrt{2}2+2β
D. 222 \sqrt{2}22β
E. 2/2\sqrt{2} / 22β/2 Solution:
(2+2)2(2β2)+2β2+2+2(2+2)(2β2)=β4β2=2\dfrac{(2+\sqrt{2})^{2}(\sqrt{2}-2)+\sqrt{2}-2+2+\sqrt{2}}{(2+\sqrt{2})(\sqrt{2}-2)}=\dfrac{-4}{-2}=2(2+2β)(2ββ2)(2+2β)2(2ββ2)+2ββ2+2+2ββ=β2β4β=2