Problem: A value of xxx satisfying the equation x2+b2=(aβx)2x^{2}+b^{2}=(a-x)^{2}x2+b2=(aβx)2 is:
Answer Choices:
A. b2+a22a\dfrac{\mathrm{b}^{2}+\mathrm{a}^{2}}{2 \mathrm{a}}2ab2+a2β
B. b2βa22a\dfrac{\mathrm{b}^{2}-\mathrm{a}^{2}}{2 \mathrm{a}}2ab2βa2β
C. a2βb22a\dfrac{a^{2}-b^{2}}{2 a}2aa2βb2β
D. aβb2\dfrac{a-b}{2}2aβbβ
E. a2βb22\dfrac{a^{2}-b^{2}}{2}2a2βb2β Solution:
x2+b2=a2β2ax+x2x^{2}+b^{2}=a^{2}-2 a x+x^{2} x2+b2=a2β2ax+x2
x=a2βb22ax=\dfrac{a^{2}-b^{2}}{2 a} x=2aa2βb2β