Problem: The logarithm of .0625.0625.0625 to the base 222 is:
Answer Choices:
A. .025.025.025
B. 0.250.250.25
C. 555
D. β4-4β4
E. β2-2β2 Solution:
Let 2.0625=xβ΄2x=.0625=124β΄x=β4\log _{2} .0625=\mathrm{x} \quad \therefore 2^{\mathrm{x}}=.0625=\dfrac{1}{2^{4}} \quad \therefore \mathrm{x}=-4log2β.0625=xβ΄2x=.0625=241ββ΄x=β4