Problem: If y=a+bxy=a+\dfrac{b}{x}y=a+xbβ, where aβΎ\underline{a}aβ and bβΎ\underline{b}bβ are constants, and if y=1y=1y=1 when x=β1x=-1x=β1, and y=5y=5y=5 when x=β5x=-5x=β5, then a+ba+ba+b equals:
Answer Choices:
A. β1-1β1
B. 000
C. 111
D. 101010
E. 111111 Solution:
y=a+bxy = a + \dfrac{b}{x} y=a+xbβ
1=aβb1 = a - b 1=aβb
5=aβ15b5 = a - \dfrac{1}{5} b 5=aβ51βb
β΄b=5anda=6\quad \therefore \quad b = 5 \quad \text{and} \quad a = 6 β΄b=5anda=6