Problem: If 222 is a solution (root) of x3+hx+10=0x^{3}+h x+10=0x3+hx+10=0, then hβΎ\underline{h}hβ equals:
Answer Choices:
A. 101010
B. 999
C. 222
D. β2-2β2
E. β9-9β9 Solution:
Substituting 222 for xxx, we have 23+hβ 2+10=0β΄h=β92^{3}+h \cdot 2+10=0 \quad \therefore \mathrm{h}=-923+hβ 2+10=0β΄h=β9 \quad