Problem: The coefficient of x7 in the expansion of (2x2ββx2β)8 is:
Answer Choices:
A. 56
B. β56
C. 14
D. β14
E. 0
Solution:
(2x2ββx2β)8=(2x)81β(x3β4)8=(2x)81β[(x3)8+8(x3)7(β4)+1β
28β
7β(x3)6(β4)2+1β
2β
38β
7β
6β(x3)5(β4)3+β¦]
The required term is 28β
x81ββ
1β
2β
38β
7β
6β(x3)5(β4)3; the required coefficient is β14
or
28x81βC(8,5)(x3)5(β4)3=28x81ββ
1β
2β
38β
7β
6β(β4)3x7=β14x7; the required coefficient is β14.