Problem: The symbol β£aβ£|a|β£aβ£ means aaa if aaa is a positive number or zero, and βa-aβa if aaa is a negative number. For all real values of ttt the expression t4+t2\sqrt{t^{4}+t^{2}}t4+t2β is equal to:
Answer Choices:
A. t3\mathrm{t}^{3}t3
B. t2+t\mathrm{t}^{2}+\mathrm{t}t2+t
C. β£t2+tβ£\left|t^{2}+t\right|β£β£β£βt2+tβ£β£β£β
D. tt2+1t \sqrt{t^{2}+1}tt2+1β
E. β£tβ£1+t2|\mathrm{t}| \sqrt{1+\mathrm{t}^{2}}β£tβ£1+t2β Solution:
t4+t3=t2(t2+1)=t2t2+1=β£tβ£1+t2\sqrt{t^{4}+t^{3}}=\sqrt{t^{2}\left(t^{2}+1\right)}=\sqrt{t^{2}} \sqrt{t^{2}+1}= \mid t \mid \sqrt{1+t^{2}}t4+t3β=t2(t2+1)β=t2βt2+1β=β£tβ£1+t2β