Problem: If 3x3β9x2+kxβ12 is divisible by xβ3, then it is also divisible by:
Answer Choices:
A. 3x2βx+4
B. 3x2β4
C. 3x2+4
D. 3xβ4
E. 3x+4
Solution:
Since 3x3β9x2+kxβ12 is divisible by xβ3, 3β
33β9β
32+kβ
3β12=0β΄k=4 Divide 3x9β9x2+4xβ12 by xβ3 and obtain 3x2+4.
or
3x3β9x2+kxβ12=(xβ3)(Ax2+Bx+C) =Ax3+(Bβ3A)x2+(Cβ3B)xβ3C β΄A=3,C=4 and Bβ3A=β9β΄B=0. The other factor is, therefore, 3x2+4.