Problem: Let the roots of ax2+bx+c=0 be r and s. The equation with roots ar+b and as+b is:
Answer Choices:
A. x2βbxβac=0
B. x2βbx+ac=0
C. x2+3 bx+ca+2 b2=0
D. x2+3bxβca+2 b2=0
E. x2+bx(2βa)+a2c+b2(a+1)=0
Solution:
We have r+s=βabβ and rs=acβ. The equation with roots ar+b and as+b is (xβ(ar+b))(xβ(as+b))=0
β΄x3β(a(r+s)+2b)x+a2rs+ab(r+s)+b2=0
β΄x2β(a(βabβ)+2b)x+a2(acβ)+ab(βabβ)+b2=0
β΄x2βbx+ac=0