Problem: If log10β2=a and log10β3=b, then log5β12 equals:
Answer Choices:
A. 1+aa+bβ
B. 1+a2a+bβ
C. 1+aa+2bβ
D. 1βa2a+bβ
E. 1βaa+2bβ
Solution:
Let log3β12=xβ΄5x=12β΄xlog10β5=log10β12
β΄x=log10β5log10β12β=log10β10βlog10β22log10β2+log10β3β=1βa2a+bβ
or
Use the formula logsβN=logbβNΓ·logbβa