Problem: The third term in the expansion of (xβaββa2xββ)6 is, when simplified:
Answer Choices:
A. x15β
B. βx15β
C. βa96x2β
D. a320β
E. βa320β
Solution:
Since (r+s)4=r6+6r5s+15r4s2+β―, we have, letting r=xβaβ and s=βa2xββ in the third term, 15(xβaβ)4(βa2xββ)2=x15β
or
Use the formula for the general term of (r+s)n,n positive integer: (k+1)th term
=1β
2β―kn(nβ1)β―(nβk+1)β(r)nβk(s)k
For k=2 we have 1β
26β
5β(xβaβ)4(βa2xββ)2=x15β