Problem: The expression 43β34\sqrt{\dfrac{4}{3}}-\sqrt{\dfrac{3}{4}}34βββ43ββ is equal to:
Answer Choices:
A. 3/6\sqrt{3} / 63β/6
B. β3/6-\sqrt{3} / 6β3β/6
C. β3/6\sqrt{-3} / 6β3β/6
D. 53/65 \sqrt{3} / 653β/6
E. 111 Solution:
43β34=233β32=43β336=36\sqrt{\dfrac{4}{3}}-\sqrt{\dfrac{3}{4}}=\dfrac{2 \sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}=\dfrac{4 \sqrt{3}-3 \sqrt{3}}{6}=\dfrac{\sqrt{3}}{6}34βββ43ββ=323βββ23ββ=643ββ33ββ=63ββ \quad