Problem: Let the bisectors of the exterior angles at B and C of triangle ABC meet at D. Then, if all measurements are in degrees, angle BDC equals:
Answer Choices:
A. 21β(90βA)
B. 90βA
C. 21β(180βA)
D. 180βA
E. 180β2 A
Solution:

2β b2β cβ΄β b+β c But (β B+β C)β΄β b+β cβ BDCβ=180βββ B=180βββ C=180ββ21β(β B+β C)=180βββ A=180ββ21β(180βββ A)=180ββ(β b+β c)=180ββ(180ββ21β(180βββ A))=21β(180βββ A)β