Problem: Point F is taken on the extension of side AD of parallelogram ABCD. BF intersects diagonal AC at E and side DC at G. If EF=32 and GF=24, then BE equals:
Answer Choices:
A. 4
B. 8
C. 10
D. 12
E. 16
Solution:
Let BE=x,DG=y,AB=b. Since β³BEAβΌβ³GEC,
x8β=bbβyβ,bβy=x8 bβ,y=bβx8 bβ=bbβx(xβ8)β
Since β³FDGβΌβ³BCG,x+824β=bβyyβ, x+824β=xβ
x8bβb(xβ8)β=8xβ8β,x2β64=192,x=16
Note: Try to prove generally that BE1β=BG1β+BF1β