Problem: If x xx is a number satisfying the equation x + 9 3 β x β 9 3 = 3 \sqrt[3]{x+9}-\sqrt[3]{x-9}=33 x + 9 β β 3 x β 9 β = 3 , then x 2 x^{2}x 2 is between:
Answer Choices:
A. 55 and 65
B. 65 and 75
C. 75 and 85
D. 85 and 95
E. 95 and 105
Solution:
x + 9 3 β x β 9 3 = 3 \sqrt[3]{x+9}-\sqrt[3]{x-9}=33 x + 9 β β 3 x β 9 β = 3 . Cube both sides and obtain
x + 9 β 3 ( x + 9 ) 2 / 3 ( x β 9 ) 2 / 3 + 3 ( x + 9 ) 1 / 3 ( x β 9 ) 2 / 3 β x + 9 = 27 x+9-3(x+9)^{2 / 3}(x-9)^{2 / 3}+3(x+9)^{1 / 3}(x-9)^{2 / 3}-x+9=27x + 9 β 3 ( x + 9 ) 2 / 3 ( x β 9 ) 2 / 3 + 3 ( x + 9 ) 1 / 3 ( x β 9 ) 2 / 3 β x + 9 = 2 7
Simplify to 9 = β 3 ( x + 9 ) 1 / 3 ( x β 9 ) 1 / 3 [ ( x + 9 ) 1 / 3 β ( x β 9 ) 1 / 3 ] = β 3 ( x + 9 ) 2 / 3 ( x β 9 ) 1 / 3 β
3 9=-3(x+9)^{1 / 3}(x-9)^{1 / 3}\left[(x+9)^{1 / 3}-(x-9)^{1 / 3}\right]=-3(x+9)^{2 / 3}(x-9)^{1 / 3} \cdot 39 = β 3 ( x + 9 ) 1 / 3 ( x β 9 ) 1 / 3 [ ( x + 9 ) 1 / 3 β ( x β 9 ) 1 / 3 ] = β 3 ( x + 9 ) 2 / 3 ( x β 9 ) 1 / 3 β
3
β΄ ( x 2 β 81 ) 1 / 3 = β 1 , x 2 = 80 \therefore\left(x^{2}-81\right)^{1 / 3}=-1, x^{2}=80β΄ ( x 2 β 8 1 ) 1 / 3 = β 1 , x 2 = 8 0 .
or
Let f ( x ) = x + 9 3 β x β 9 3 f(x)=\sqrt[3]{x+9}-\sqrt[3]{x-9}f ( x ) = 3 x + 9 β β 3 x β 9 β . We want to find x xx , so that f ( x 1 ) = 3 f\left(x_{1}\right)=3f ( x 1 β ) = 3 . Since f ( 9 ) = 18 3 < 3 f(9)=\sqrt[3]{18}<3f ( 9 ) = 3 1 8 β < 3 and f ( 8 ) = 17 3 + 1 > 3 f(8)=\sqrt[3]{17}+1>3f ( 8 ) = 3 1 7 β + 1 > 3 , then 8 < x 1 < 9 8<x_{1}<98 < x 1 β < 9 . We refine our guess by trying next x 1 = 8 7 8 x_{1}=8 \dfrac{7}{8}x 1 β = 8 8 7 β ; f ( 8 7 8 ) = 17 7 8 3 + 1 2 > 3. β΄ 8 7 8 < x 1 < 9 β΄ ( 8 7 8 ) 2 < x 1 2 < 81 , 78 < x 1 2 < 81 \mathrm{f}\left(8 \dfrac{7}{8}\right)=\sqrt[3]{17 \dfrac{7}{8}}+\dfrac{1}{2}>3 . \quad \therefore 8 \dfrac{7}{8}<x_{1}<9 \quad \therefore\left(8 \dfrac{7}{8}\right)^{2}<x_{1}^{2}<81,78<x_{1}^{2}<81f ( 8 8 7 β ) = 3 1 7 8 7 β β + 2 1 β > 3 . β΄ 8 8 7 β < x 1 β < 9 β΄ ( 8 8 7 β ) 2 < x 1 2 β < 8 1 , 7 8 < x 1 2 β < 8 1 .