Problem: In the expansion of (aβaβ1β)7 the coefficient of aβ1/2 is:
Answer Choices:
A. β7
B. 7
C. β21
D. 21
E. 35
Solution:
(aβa1/21β)7=a7β7a1/2+21a4β21a3/2+35aβ21aβ1/2+7aβ2βaβ7/2
(r+1) th term =(r7β)a7βr(βaβ1/2)r=Β±β(r7β)a7βrβr/2. We need a7βrβr/2=aβ1/2,7β23rβ=β21β,r=5
β΄6 th term =1β
2β
3β
4β
57β
6β
5β
4β
3βa2(βa)β5/2=β21aβ1/2.