Problem: Let y = ( x β a ) 2 + ( x β b ) 2 , a , b y=(x-a)^{2}+(x-b)^{2}, a, by = ( x β a ) 2 + ( x β b ) 2 , a , b constants. For what value of x xx is y yy a minimum?
Answer Choices:
A. a + b 2 \dfrac{a+b}{2}2 a + b β
B. a + b a+ba + b
C. a b \sqrt{a b}a b β
D. a 2 + b 2 2 \sqrt{\dfrac{\mathrm{a}^{2}+\mathrm{b}^{2}}{2}}2 a 2 + b 2 β β
E. a + b 2 a b \dfrac{a+b}{2 a b}2 a b a + b β
Solution:
y = ( x β a ) 2 + ( x β b ) 2 = 2 [ x 2 β ( a + b ) x ] + a 2 + b 2 y=(x-a)^{2}+(x-b)^{2}=2\left[x^{2}-(a+b) x\right]+a^{2}+b^{2}
y = ( x β a ) 2 + ( x β b ) 2 = 2 [ x 2 β ( a + b ) x ] + a 2 + b 2
β΄ y = 2 [ x 2 β ( a + b ) x + ( a + b 2 ) 2 ] + a 2 + b 2 β 2 ( a + b 2 ) 2 \therefore y=2\left[x^{2}-(a+b) x+\left(\dfrac{a+b}{2}\right)^{2}\right]+a^{2}+b^{2}-2\left(\dfrac{a+b}{2}\right)^{2}
β΄ y = 2 [ x 2 β ( a + b ) x + ( 2 a + b β ) 2 ] + a 2 + b 2 β 2 ( 2 a + b β ) 2
β΄ y = 2 [ x β a + b 2 ] 2 + ( a β b ) 2 2 \therefore y=2\left[x-\dfrac{a+b}{2}\right]^{2}+\dfrac{(a-b)^{2}}{2}
β΄ y = 2 [ x β 2 a + b β ] 2 + 2 ( a β b ) 2 β
For y yy to be a minimum x=\dfrac{a+b}
or
The graph of y = 2 x 2 β 2 ( a + b ) x + a 2 + b 2 y=2 x^{2}-2(a+b) x+a^{2}+b^{2}y = 2 x 2 β 2 ( a + b ) x + a 2 + b 2 is a parabola concave up with respect to the x xx -axis. It has a minimum point on the axis of symmetry, the equation of which is x = β β 2 ( a + b ) 4 x=-\dfrac{-2(a+b)}{4}x = β 4 β 2 ( a + b ) β , that is, x=\dfrac{a+b}