Problem: If x is a real number and β£xβ4β£+β£xβ3β£<a where a >0, then:
Answer Choices:
A. 0<a<.01
B. .01< a <1
C. 0< a <1
D. 0<aβ¦1
E. a>1
Solution:
When xβ§4,β£xβ4β£+β£xβ3β£=xβ4+xβ3β§1
When xβ¦3,β£xβ4β£+β£xβ3β£=4βx+3βxβ§1
When 3<x<4,β£xβ4β£+β£xβ3β£=4βx+xβ3=1
Since a>β£xβ4β£+β£xβ3β£, then a>1.