Problem: Let f(n)=105+35ββ(21+5ββ)n+105β35ββ(21β5ββ)n. Then f(n+1)βf(nβ1), expressed in terms of f(n), equals:
Answer Choices:
A. 21βf(n)
B. f(n)
C. 2f(n)+1
D. f2(n)
E. 21β(f2(n)β1)
Solution:
f(n+1)βf(nβ1)=25+35ββ(21+5ββ)n+1+25β35ββ(21β5ββ)n+1β25+35ββ(21+5ββ)nβ1β25β35ββ(21β5ββ)nβ1
β΄f(n+1)βf(nβ1)=25+35ββ(21+5ββ)n[21+5βββ1+5β2β]+25β35ββ(21β5ββ)n[21β5βββ1β5β2β]
β΄f(n+1)βf(nβ1)=25+35ββ(21+5ββ)n(1)+25β35ββ(21β5ββ)n(1)=f(n)