Problem: If n is a multiple of 4, the sum s=1+2i+3i2+β¦+(n+1)in, where i=β1β, equals:
Answer Choices:
A. 1+i
B. 21β(n+2)
C. 21β(n+2βni)
D. 21β[(n+1)(1βi)+2]
E. 81β(n2+8β4ni)
Solution:
s=1+2i+3i2+β¦+(n+1)in
is=i+2i2+β¦+nin+(n+1)in+1
s(1βi)=1+i+i2+β¦+inβ(n+1)in+1
s(1βi)=1βi1βin+1ββ(n+1)in+1=1β(n+1)i since in=1
β΄s=1βi1β(n+1)iββ
1+i1+iβ=21β(n+2βni)
OR
s=1+3i2+5i4+7i6+β¦+(n+1)in+2i+4i3+β¦+ninβ1
s=(1β3)+(5β7)+β¦((nβ3)β(nβ1))+n+1+i[(2β4)+(6β8)+β¦+(nβ2βn)]
s=4nβ(β2)+n+1+4nβ(β2)i=21β(n+2βni)