Problem: The sides of a triangle are of lengths 13,14, and 15. The altitudes of the triangle meet at point H. If AD is the altitude to side of length 14, the ratio HD:HA is:
Answer Choices:
A. 3:11
B. 5:11
C. 1:2
D. 2:3
E. 25:33
Solution:
142βq2=132βp2,27=q2βp2,15=q+pβ΄q=542β,p=533β
132βr2=152βs2,56=s2βr2,14=s+rβ΄s=9,r=5
AD2=132β52,AD=12,BE2=132β(533β)2,BE=556β
β³HDBβΌβ³HEAβ΄utβ=prβ=12βt556ββuβ
Since r=5,p=533β,u=2533βt,12βt=12533β
156ββ25β
2533β
33ββ
t
β΄t=116435β,12βt=116957ββ΄HD:HA=435:957=5:11