Problem: If yyy varies directly as xxx and if y=8y=8y=8 when x=4x=4x=4, the value of yyy when x=β8x=-8x=β8 is:
Answer Choices:
A. β16-16β16
B. β4-4β4
C. β2-2β2
D. 4k,k=Β±1,Β±2,β¦4 \mathrm{k}, \mathrm{k}= \pm 1, \pm 2, \ldots4k,k=Β±1,Β±2,β¦
E. 16k,k=Β±1,Β±2,β¦16 \mathrm{k}, \mathrm{k}= \pm 1, \pm 2, \ldots16k,k=Β±1,Β±2,β¦ Solution:
y1x1y2x2β΄84=y2β8,y2β16\dfrac{y_{1}}{x_{1}} \quad \dfrac{y_{2}}{x_{2}} \quad \therefore \dfrac{8}{4}=\dfrac{y_{2}}{-8}, y_{2}-16x1βy1ββx2βy2βββ΄48β=β8y2ββ,y2ββ16