Problem: The statement x2βxβ6<0 is equivalent to the statement:
Answer Choices:
A. β2<x<3
B. x>β2
C. x<3
D. x>3 and x<β2
E. x>3 or x<β2
Solution:
x2βxβ6<0,x2βx<6,x2βx+41β<6+41β,(xβ21β)2<(25β)2
β΄β£β£β£β£β£βxβ21ββ£β£β£β£β£β<25β or β25β<xβ21β<25β, that is β2<x<3
or
x2βxβ6<0,(xβ3)(x+2)<0. This inequality is satisfied if xβ3<0 and x+2>0 or if xβ3>0 and x+2<0. The first set of inequalities implies β2<x<3; the second set is impossible to satisfy.