Problem: If we write β£β£β£βx2β4β£β£β£β<N for all x such that β£xβ2β£<0.01, the smallest value we can use for N is:
Answer Choices:
A. 0.0301
B. 0.0349
C. 0.0399
D. 0.0401
E. 0.0499
Solution:
Since β£xβ2β£<0.01,β£β£β£βx2β4β£β£β£β=β£xβ2β£β£x+2β£. But β£x+2β£β¦β£xβ£+2<2.01+2=4.01, since β£xβ2β£<0.01 implies that x<2.01β΄β£β£β£βx2β4β£β£β£β<(.01)(4.01)=.0401
or
β£xβ2β£<0.01 implies 1.99<x<2.01β΄3.9599<3.9601<x2<4.0401
β΄β0401<x2β4<.0401, that is, β£β£β£βx2β4β£β£β£β<.0401