Problem: The expression (81)β(2β2)(81)^{-\left(2^{-2}\right)}(81)β(2β2) has the same value as:
Answer Choices:
A. 181\dfrac{1}{81}811β
B. 13\dfrac{1}{3}31β
C. 333
D. 818181
E. 81481^{4}814 Solution:
81β(2β2)=81β1/4=1811/4=1381^{-\left(2^{-2}\right)}=81^{-1 / 4}=\dfrac{1}{81^{1 / 4}}=\dfrac{1}{3}81β(2β2)=81β1/4=811/41β=31β. Query: Is there another permissible value not listed in the five choices?